Comparative mathematical modeling of causal association between metal exposure and development of chronic kidney disease

Author:

Wu Miaoling,Hou Weiming,Qin Ruonan,Wang Gang,Sun Da,Geng Ye,Du Yinke

Abstract

BackgroundPrevious studies have identified several genetic and environmental risk factors for chronic kidney disease (CKD). However, little is known about the relationship between serum metals and CKD risk.MethodsWe investigated associations between serum metals levels and CKD risk among 100 medical examiners and 443 CKD patients in the medical center of the First Hospital Affiliated to China Medical University. Serum metal concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). We analyzed factors influencing CKD, including abnormalities in Creatine and Cystatin C, using univariate and multiple analysis such as Lasso and Logistic regression. Metal levels among CKD patients at different stages were also explored. The study utilized machine learning and Bayesian Kernel Machine Regression (BKMR) to assess associations and predict CKD risk based on serum metals. A chained mediation model was applied to investigate how interventions with different heavy metals influence renal function indicators (creatinine and cystatin C) and their impact on diagnosing and treating renal impairment.ResultsSerum potassium (K), sodium (Na), and calcium (Ca) showed positive trends with CKD, while selenium (Se) and molybdenum (Mo) showed negative trends. Metal mixtures had a significant negative effect on CKD when concentrations were all from 30th to 45th percentiles compared to the median, but the opposite was observed for the 55th to 60th percentiles. For example, a change in serum K concentration from the 25th to the 75th percentile was associated with a significant increase in CKD risk of 5.15(1.77,8.53), 13.62(8.91,18.33) and 31.81(14.03,49.58) when other metals were fixed at the 25th, 50th and 75th percentiles, respectively.ConclusionsCumulative metal exposures, especially double-exposure to serum K and Se may impact CKD risk. Machine learning methods validated the external relevance of the metal factors. Our study highlights the importance of employing diverse methodologies to evaluate health effects of metal mixtures.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3