Early postoperative prediction of the risk of distant metastases in medullary thyroid cancer

Author:

Zhang Yuhan,Zhou Qing,Chen Guang,Xue Shuai

Abstract

PurposeThe purpose of this study was to develop and validate a nomogram for estimating the risk of distant metastases (DM) in the early postoperative phase of medullary thyroid cancer (MTC).Patients and methodsWe retrospectively reviewed cases of patients diagnosed with MTC from the Surveillance, Epidemiology, and End Results (SEER) database from 2007 to 2017. In addition, we gathered data on patients who diagnosed as MTC at Department of Thyroid Surgery in the First Hospital of Jilin University between 2009 and 2021. Four machine learning algorithms were used for modeling, including random forest classifier (RFC), gradient boosting decision tree (GBDT), logistic regression (LR), and support vector machine (SVM). The optimal model was selected based on accuracy, recall, specificity, receiver operating characteristic curve (ROC), and area under curve (AUC). After that, the Hosmer-Lemeshow goodness-of-fit test, the brier score (BS) and calibration curve were used for validation of the best model, which allowed us to measure the discrepancy between the projected value and the actual value.ResultsThrough feature selection, we finally clarified that the following four features are associated with distant metastases of MTC, which are age, surgery, primary tumor (T) and nodes (N). The AUC values of the four models in the internal test set were as follows: random forest: 0.8786 (95% CI, 0.8070-0.9503), GBDT: 0.8402 (95% CI, 0.7606-0.9199), logistic regression: 0.8670(95%CI,0.7927-0.9413), and SVM: 0.8673 (95% CI, 0.7931-0.9415). As can be shown, there was no statistically significant difference in their AUC values. The highest AUC value of the four models were chosen as the best model since. The model was evaluated on the internal test set, and the accuracy was 0.84, recall was 0.76, and specificity was 0.87. The ROC curve was drawn, and the AUC was 0.8786 (95% CI, 0.8070-0.9503), which was higher than the other three models. The model was visualized using the nomogram and its net benefit was shown in both the Decision Curve Analysis (DCA) and Clinical Impact Curve (CIC).ConclusionProposed model had good discrimination ability and could preliminarily screen high-risk patients for DM in the early postoperative period.

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3