Titrating Growth Hormone Dose to High-Normal IGF-1 Levels Has Beneficial Effects on Body Fat Distribution and Microcirculatory Function Despite Causing Insulin Resistance

Author:

van Bunderen Christa C.,Meijer Rick I.,Lips Paul,Kramer Mark H.,Serné Erik H.,Drent Madeleine L.

Abstract

To clarify the mechanism underlying the described U-shaped relation of both low and high levels of IGF-1 with cardiovascular disease this study explores the effect of decreasing and increasing growth hormone dose in GH deficient adults on (micro)vascular function, body composition and insulin resistance. In this randomized clinical trial, thirty-two subjects receiving GH therapy with an IGF-1 concentration between −1 and 1 SD score (SDS) for at least one year were randomized to receive either a decrease (IGF-1 target level of −2 to −1 SDS) or an increase of their daily GH dose (IGF-1 target level of 1 to 2 SDS) for a period of 24 weeks. Microvascular endothelium (in)dependent vasodilatation and vasomotion, vascular stiffness by pulse wave analysis, and HOMA-IR were measured. At the end of the study 30 subjects (65.6% men, mean age 46.6 (SD 9.9) years) were analyzed. There was a favorable effect of increasing the IGF-1 level on waist circumference compared to decreasing the IGF-1 level (p=0.05), but a detrimental effect on insulin resistance (p=0.03). Decreasing IGF-1 level significantly lowered the endothelial domain of vasomotion (p=0.03), whereas increasing IGF-1 level increased the contribution of the neurogenic domain (p=0.05). This change was related to the favorable change in waist circumference. In conclusion, increasing IGF-1 levels was beneficial for body composition but detrimental with respect to insulin resistance. The contribution of the neurogenic vasomotion domain increased in parallel, and could be explained by the favorable change in waist circumference.Clinical Trial RegistrationClinicalTrials.gov, identifier NCT01877512.

Funder

ZonMw

Pfizer

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3