Zero echo time MRI improved detection of erosions and sclerosis in the sacroiliac joint in comparison with LAVA-flex

Author:

Lin Churong,Liu Dong,Wen Huiquan,Liu Budian,Tu Liudan,Gu Jieruo

Abstract

BackgroundT1-weighted spoiled 3D Gradient Recalled Echo pulse sequences, exemplified by Liver Acquisition with Volume Acceleration-flexible MRI (LAVA-Flex), are currently the preferred MR sequence for detecting erosions of the sacroiliac joint (SIJ). However, zero echo time MRI (ZTE) is recently reported to provide excellent visualization of the cortical bone.PurposeTo directly compare the diagnostic accuracy of ZTE and LAVA-Flex in the detection of structural lesions of the SIJ, including erosions, sclerosis and joint space changes.Materials and methodsTwo readers independently reviewed the ldCT, ZTE and LAVA-Flex images of 53 patients diagnosed as axSpA and scored the erosions, sclerosis and joint space changes. Sensitivity, specificity and Cohen’s kappa (κ) of ZTE and LAVA-Flex were calculated, while McNemar’s test was employed to compare the two sequences for the positivity of detecting the structural lesions.ResultsAnalysis of diagnostic accuracy showed a higher sensitivity of ZTE in comparison with LAVA-Flex in the depiction of erosions (92.5% vs 81.5%, p<0.001), especially first-degree erosions (p<0.001) and second-degree erosions (p<0.001), as well as sclerosis (90.6% vs 71.2%, p<0.001), but not joint space changes (95.2% vs 93.8%, p=0.332). Agreement with ldCT was also higher in ZTE in the detection of erosions than LAVA-Flex as indicated by the κ values (0.73 vs 0.47), as well as in the detection of sclerosis (0.92 vs 0.22).ConclusionWith ldCT as the reference standard, ZTE could improve diagnostic accuracy of erosions and sclerosis of the SIJ in patients suspected of axSpA, in comparison with LAVA-Flex.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangdong Province

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3