Exploration of the core protein network under endometriosis symptomatology using a computational approach

Author:

El Idrissi Fatima,Fruchart Mathilde,Belarbi Karim,Lamer Antoine,Dubois-Deruy Emilie,Lemdani Mohamed,N’Guessan Assi L.,Guinhouya Benjamin C.,Zitouni Djamel

Abstract

BackgroundEndometriosis is defined by implantation and invasive growth of endometrial tissue in extra-uterine locations causing heterogeneous symptoms, and a unique clinical picture for each patient. Understanding the complex biological mechanisms underlying these symptoms and the protein networks involved may be useful for early diagnosis and identification of pharmacological targets.MethodsIn the present study, we combined three approaches (i) a text-mining analysis to perform a systematic search of proteins over existing literature, (ii) a functional enrichment analysis to identify the biological pathways in which proteins are most involved, and (iii) a protein–protein interaction (PPI) network to identify which proteins modulate the most strongly the symptomatology of endometriosis.ResultsTwo hundred seventy-eight proteins associated with endometriosis symptomatology in the scientific literature were extracted. Thirty-five proteins were selected according to degree and betweenness scores criteria. The most enriched biological pathways associated with these symptoms were (i) Interleukin-4 and Interleukin-13 signaling (p = 1.11 x 10-16), (ii) Signaling by Interleukins (p = 1.11 x 10-16), (iii) Cytokine signaling in Immune system (p = 1.11 x 10-16), and (iv) Interleukin-10 signaling (p = 5.66 x 10-15).ConclusionOur study identified some key proteins with the ability to modulate endometriosis symptomatology. Our findings indicate that both pro- and anti-inflammatory biological pathways may play important roles in the symptomatology of endometriosis. This approach represents a genuine systemic method that may complement traditional experimental studies. The current data can be used to identify promising biomarkers for early diagnosis and potential therapeutic targets.

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3