Relevance of PUFA-derived metabolites in seminal plasma to male infertility

Author:

Chen Xiangfeng,Wu Bin,Shen XiaoRong,Wang Xin,Ping Ping,Miao Maohua,Liang Ningning,Yin Huiyong,Shi Huijuan,Qian Jun,Zhang Tiancheng

Abstract

AimThis study aims to investigate the biological effects of polyunsaturated fatty acid (PUFA)-derived metabolites in seminal plasma on male fertility and to evaluate the potential of PUFA as a biomarker for normozoospermic male infertility.MethodsFrom September 2011 to April 2012, We collected semen samples from 564 men aged 18 to 50 years old (mean=32.28 years old)ch., residing in the Sandu County, Guizhou Province, China. The donors included 376 men with normozoospermia (fertile: n=267; infertile: n=109) and 188 men with oligoasthenozoospermia (fertile: n=121; infertile: n=67). The samples thus obtained were then analyzed by liquid chromatography-mass spectrometry (LC-MS) to detect the levels of PUFA-derived metabolites in April 2013. Data were analyzed from December 1, 2020, to May 15, 2022.ResultsOur analysis of propensity score-matched cohorts revealed that the concentrations of 9/26 and 7/26 metabolites differed significantly between fertile and infertile men with normozoospermia and oligoasthenozoospermia, respectively (FDR < 0.05). In men with normozoospermia, higher levels of 7(R)-MaR1 (HR: 0.4 (95% CI [0.24, 0.64]) and 11,12-DHET (0.36 (95% CI [0.21, 0.58]) were significantly associated with a decreased risk of infertility, while higher levels of 17(S)-HDHA (HR: 2.32 (95% CI [1.44, 3.79]), LXA5 (HR: 8.38 (95% CI [4.81, 15.24]), 15d-PGJ2 (HR: 1.71 (95% CI [1.06, 2.76]), and PGJ2 (HR: 2.28 (95% CI [1.42, 3.7]) correlated with an increased risk of infertility. Our ROC model using the differentially expressed metabolites showed the value of the area under the curve to be 0.744.ConclusionThe PUFA-derived metabolites 7(R)-MaR1, 11,12-DHET, 17(S)-HDHA, LXA5, and PGJ2 might be considered as potential diagnostic biomarkers of infertility in normozoospermic men.

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3