Massively Parallel Sequencing for Rare Genetic Disorders: Potential and Pitfalls

Author:

McInerney-Leo Aideen M.,Duncan Emma L.

Abstract

There have been two major eras in the history of gene discovery. The first was the era of linkage analysis, with approximately 1,300 disease-related genes identified by positional cloning by the turn of the millennium. The second era has been powered by two major breakthroughs: the publication of the human genome and the development of massively parallel sequencing (MPS). MPS has greatly accelerated disease gene identification, such that disease genes that would have taken years to map previously can now be determined in a matter of weeks. Additionally, the number of affected families needed to map a causative gene and the size of such families have fallen: de novo mutations, previously intractable by linkage analysis, can be identified through sequencing of the parent–child trio, and genes for recessive disease can be identified through MPS even of a single affected individual. MPS technologies include whole exome sequencing (WES), whole genome sequencing (WGS), and panel sequencing, each with their strengths. While WES has been responsible for most gene discoveries through MPS, WGS is superior in detecting copy number variants, chromosomal rearrangements, and repeat-rich regions. Panels are commonly used for diagnostic purposes as they are extremely cost-effective and generate manageable quantities of data, with no risk of unexpected findings. However, in instances of diagnostic uncertainty, it can be challenging to choose the right panel, and in these circumstances WES has a higher diagnostic yield. MPS has ethical, social, and legal implications, many of which are common to genetic testing generally but amplified due to the magnitude of data (e.g., relationship misattribution, identification of variants of uncertain significance, and genetic discrimination); others are unique to WES and WGS technologies (e.g., incidental or secondary findings). Nonetheless, MPS is rapidly translating into clinical practice as an extremely useful part of the clinical armamentarium.

Funder

National Health and Medical Research Council

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

Reference105 articles.

1. The incidence of alkaptonuria: a study in chemical individuality. 1902;Garrod;Mol Med (Cambridge Mass),1996

2. “Versuche über Pflanzenhybriden”, Verhandlungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr, 1865, Abhandlungen: 3–47. For the English translation, see: Druery, C.T.; Bateson, William (1901). “Experiments in plant hybridization”;Mendel;J R Hortic Society,1866

3. Human Genomics in Global Health: Genes and human diseases2020

4. Nosology and classification of genetic skeletal disorders: 2019 revision;Mortier;Am J Med Genet A,2019

5. A polymorphic DNA marker genetically linked to Huntington’s disease;Gusella;Nature,1983

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3