Altered Caffeine Metabolism Is Associated With Recurrent Hypoglycemia in Type 2 Diabetes Mellitus: A UPLC–MS-Based Untargeted Metabolomics Study

Author:

Lijing Wang,Sujie Ke,Linxi Wang,Lishan Huang,Liqin Qi,Zhidong Zhan,Kejun Wu,Mengjun Zhang,Xiaoying Liu,Xiaohong Liu,Libin Liu

Abstract

BackgroundRecurrent hypoglycemia (RH) is well known to impair awareness of hypoglycemia and increase the risk of severe hypoglycemia; the underlying mechanism requires further understanding. We aimed to investigate the metabolic characteristic profile for RH in type 2 diabetes mellitus (T2DM) patients and explore the potential metabolic mechanism and prevention strategies.MethodsWe screened 553 community-based T2DM patients. T2DM with RH (DH group, n=40) and T2DM without hypoglycemia (DC group, n=40) were assigned in the case-control study, matched by propensity score matching. Non-targeted, global metabolite profiling was conducted using ultra-high performance liquid chromatography-mass spectrometry. Principal component analysis and supervised projections to latent structures-discriminant analysis were constructed to evaluate the potential biomarkers. Metabolites with a fold change of >2.0 or <0.5, a t-test q-value <0.05, and variable importance in projection value of >1 were identified as significantly differential metabolites. MetaboAnalyst was performed to analyze the related metabolic pathways.ResultsWe identified 12 significantly distinct metabolites as potential biomarkers of RH, which were enriched in five pathways; the caffeine metabolic pathway was the most dominant related one. Caffeine and its main downstream metabolites (theophylline and paraxanthine, all q <0.05) were significantly lower during RH. The combination of these metabolites can serve as a reliable predictor biomarker for RH (area under the curve = 0.88). Regarding lipid metabolism, triglyceride was upregulated (P=0.003) and the O-Acylcarnitine was downregulated (q < 0.001). Besides, RH was accompanied by lower phenylalanine (q=0.003) and higher cortisone (q=0.005) levels.ConclusionsRH in T2DM is accompanied by caffeine, lipolysis, phenylalanine, and cortisone metabolism abnormalities. Caffeine might be a reliable candidate biomarker and potential prevention strategy for RH, but further validation studies are needed.Clinical Trial RegistryChi CTR 1900026361, 2019-10-3.

Funder

Fujian Provincial Department of Science and Technology

Shanghai Health and Medical Development Foundation

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3