The evolution of PRRT for the treatment of neuroendocrine tumors; What comes next?

Author:

Harris Philip E.,Zhernosekov Konstantin

Abstract

Lu-177 has been developed for the treatment of patients with peptide receptor radionuclide therapy (PRRT). A second generation pure no-carrier-added Lu-177 has a high specific activity and has waste disposal advantages over the first generation carrier-added Lu-177. PRRT has recently been developed for the treatment of neuroendocrine tumors (NETs). The majority of pancreatic and gastroenteric NETs (GEP-NETs) express the somatostatin receptors (SSTRs) 2 and 5. These receptors can be specifically targeted with a somatostatin peptide analogue (DOTATOC/DOTATATE) which can be chelated to a positron emission tomography (PET) emitting radioisotope such as Ga-68 for imaging or to a β-emitting radioisotope Lu-177 for therapy. A key advantage of this approach is that the receptor expression can be demonstrated by PET imaging before the patient is treated. Clinical studies in G1 and G2 GEP-NETS have demonstrated that PRRT is extremely effective in terms of progression free survival (PFS), symptom control and quality of life, with a well-established safety profile. A beneficial effect on outcome survival awaits to be confirmed. The first commercially available product Lu-177-DOTATATE was approved following the NETTER-1 trial in G1 and G2 GE-NETS. Lu-177-DOTATATE 7,4 GBq every 8 weeks for 4 cycles, together with octreotide LAR 30 mg monthly, demonstrated a median PFS of 28,4 months compared to 8,5 months for octreotide LAR 60 mg monthly. A second pivotal study COMPETE is currently in progress, comparing no carrier-added (n.c.a.) Lu-177-DOTATOC to the m-TOR inhibitor Everolimus in both GE-NETs and PNETs. Two studies, NETTER-2 and COMPOSE are currently underway in patients with high grade G2 and G3 NETs. Novel SSTR antagonists are being developed as next generation targeting molecules for SSTR2-expressing tumors. Antagonists have a higher tumor binding to receptors than agonists, opening up the potential indications for SSTR2 targeting to tumors which have a relatively lower expression of SSTR2 compared to NET such as small cell lung cancer, hepatocellular carcinoma and breast cancer. In addition to Lu-177, radioisotopes with different radiation properties such as Tb-161 and the α-emitter Ac-225 are being developed which have the potential to improve treatment efficacy across the range of G1 to G3 NETs.

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3