Risk factors and diagnostic prediction models for papillary thyroid carcinoma

Author:

Zhang Xiaowen,Ze Yuyang,Sang Jianfeng,Shi Xianbiao,Bi Yan,Shen Shanmei,Zhang Xinlin,Zhu Dalong

Abstract

Thyroid nodules (TNs) represent a common scenario. More accurate pre-operative diagnosis of malignancy has become an overriding concern. This study incorporated demographic, serological, ultrasound, and biopsy data and aimed to compare a new diagnostic prediction model based on Back Propagation Neural Network (BPNN) with multivariate logistic regression model, to guide the decision of surgery. Records of 2,090 patients with TNs who underwent thyroid surgery were retrospectively reviewed. Multivariate logistic regression analysis indicated that Bethesda category (OR=1.90, P<0.001), TIRADS (OR=2.55, P<0.001), age (OR=0.97, P=0.002), nodule size (OR=0.53, P<0.001), and serum levels of Tg (OR=0.994, P=0.004) and HDL-C (OR=0.23, P=0.001) were statistically significant independent differentiators for patients with PTC and benign nodules. Both BPNN and regression models showed good accuracy in differentiating PTC from benign nodules (area under the curve [AUC], 0.948 and 0.924, respectively). Notably, the BPNN model showed a higher specificity (88.3% vs. 73.9%) and negative predictive value (83.7% vs. 45.8%) than the regression model, while the sensitivity (93.1% vs. 93.9%) was similar between two models. Stratified analysis based on Bethesda indeterminate cytology categories showed similar findings. Therefore, BPNN and regression models based on a combination of demographic, serological, ultrasound, and biopsy data, all of which were readily available in routine clinical practice, might help guide the decision of surgery for TNs.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3