The exon-skipping oligonucleotide, KitStop, depletes tissue-resident mast cells in vivo to ameliorate anaphylaxis

Author:

Hedgespeth Barry A.,Snider Douglas B.,Bitting Katie J.,Cruse Glenn

Abstract

IntroductionAnaphylaxis represents the most extreme and life-threatening form of allergic disease and is considered a medical emergency requiring immediate intervention. Additionally, some people with mastocytosis experience recurrent episodes of anaphylaxis during normal daily activities without exposure to known triggers. While acute therapy consists primarily of epinephrine and supportive care, chronic therapy relies mostly on desensitization and immunotherapy against the offending allergen, which is a time-consuming and sometimes unsuccessful process. These treatments also necessitate identification of the triggering allergen which is not always possible, and thus highlighting a need for alternative treatments for mast cell-mediated diseases.MethodsThe exon-skipping oligonucleotide KitStop was administered to mice intradermally, intraperitoneally, or systemically at a dose of 12.5 mg/kg. Local mast cell numbers were enumerated via peritoneal lavage or skin histology, and passive systemic anaphylaxis was induced to evaluate KitStop’s global systemic effect. A complete blood count and biochemistry panel were performed to assess the risk of acute toxicity following KitStop administration.ResultsHere, we report the use of an exon-skipping oligonucleotide, which we have previously termed KitStop, to safely reduce the severity and duration of the anaphylactic response via mast cell depopulation in tissues. KitStop administration results in the integration of a premature stop codon within the mRNA transcript of the KIT receptor—a receptor tyrosine kinase found primarily on mast cells and whose gain-of-function mutation can lead to systemic mastocytosis. Following either local or systemic KitStop treatment, mice had significantly reduced mast cell numbers in the skin and peritoneum. In addition, KitStop-treated mice experienced a significantly diminished anaphylactic response using a model of passive systemic anaphylaxis when compared with control mice.DiscussionKitStop treatment results in a significant reduction in systemic mast cell responses, thus offering the potential to serve as a powerful additional treatment modality for patients that suffer from anaphylaxis.

Funder

National Institute of Allergy and Infectious Diseases

National Institute of Environmental Health Sciences

NIH Office of the Director

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3