Snowflake: A deep learning-based human leukocyte antigen matching algorithm considering allele-specific surface accessibility

Author:

Niemann Matthias,Matern Benedict M.,Spierings Eric

Abstract

Histocompatibility in solid-organ transplantation has a strong impact on long-term graft survival. Although recent advances in matching of both B-cell epitopes and T-cell epitopes have improved understanding of allorecognition, the immunogenic determinants are still not fully understood. We hypothesized that HLA solvent accessibility is allele-specific, thus supporting refinement of HLA B-cell epitope prediction. We developed a computational pipeline named Snowflake to calculate solvent accessibility of HLA Class I proteins for deposited HLA crystal structures, supplemented by constructed HLA structures through the AlphaFold protein folding predictor and peptide binding predictions of the APE-Gen docking framework. This dataset trained a four-layer long short-term memory bidirectional recurrent neural network, which in turn inferred solvent accessibility of all known HLA Class I proteins. We extracted 676 HLA Class-I experimental structures from the Protein Data Bank and supplemented it by 37 Class-I alleles for which structures were predicted. For each of the predicted structures, 10 known binding peptides as reported by the Immune Epitope DataBase were rendered into the binding groove. Although HLA Class I proteins predominantly are folded similarly, we found higher variation in root mean square difference of solvent accessibility between experimental structures of different HLAs compared to structures with identical amino acid sequence, suggesting HLA’s solvent accessible surface is protein specific. Hence, residues may be surface-accessible on e.g. HLA-A*02:01, but not on HLA-A*01:01. Mapping these data to antibody-verified epitopes as defined by the HLA Epitope Registry reveals patterns of (1) consistently accessible residues, (2) only subsets of an epitope’s residues being consistently accessible and (3) varying surface accessibility of residues of epitopes. Our data suggest B-cell epitope definitions can be refined by considering allele-specific solvent-accessibility, rather than aggregating HLA protein surface maps by HLA class or locus. To support studies on epitope analyses in organ transplantation, the calculation of donor-allele-specific solvent-accessible amino acid mismatches was implemented as a cloud-based web service.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3