Murine scald models characterize the role of neutrophils and neutrophil extracellular traps in severe burns

Author:

Elrod Julia,Lenz Moritz,Kiwit Antonia,Armbrust Lina,Schönfeld Lavinia,Reinshagen Konrad,Pagerols Raluy Laia,Mohr Christoph,Saygi Ceren,Alawi Malik,Rohde Holger,Herrmann Martin,Boettcher Michael

Abstract

IntroductionSevere burns cause unique pathophysiological alterations especially on the immune system. A murine scald model was optimized as a basis for the understanding of immunological reactions in response to heat induced injury. The understanding of the roles of neutrophil extracellular traps (NETs) and DNases will support the development of new surgical or pharmacological strategies for the therapy of severe burns.MethodsWe studied C57BL/6 mice (n=30) and employed four scalding protocols with varying exposure times to hot water. An additional scald group with a shorter observational time was generated to reduce mortality and study the very early phase of pathophysiology. At 24h or 72h, blood was drawn and tissue (wound, liver, lung, spleen) was analyzed for the presence of NETs, oxidative stress, apoptosis, bacterial translocation, and extracellular matrix re-organization. In addition, we analyzed the transcriptome from lung and liver tissues.ResultsExposure to hot water for 7s led to significant systemic and local effects and caused considerable late mortality. Therefore, we used an observation time of 24h in this groups. To study later phases of burns (72h) an exposure time of 6s is optimal. Both conditions led to significant disorganization of collagen, increased oxidative stress, NET formation (by immunodetection of H3cit, NE, MPO), apoptosis (cC3) and alterations of the levels of DNase1 and DNase1L3. Transcriptome analysis revealed remarkable alterations in genes involved in acute phase signaling, cell cohesion, extracellular matrix organization, and immune response.ConclusionWe identified two scald models that allow the analysis of early (24h) or late (72h) severe burn effects, thereby generating reproducible and standardized scald injuries. The study elucidated the important involvement of neutrophil activity and the role of NETs in burns. Extensive transcriptome analysis characterized the acute phase and tissue remodeling pathways involved in the process of healing and may serve as crucial basis for future in-depth studies.

Funder

Georg und Jürgen Rickertsen Stiftung

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3