CX3CL1-induced CD16+ monocytes extravasation in myeloperoxidase-ANCA-associated vasculitis correlates with renal damage

Author:

Tang Jiale,Liao Zhonghua,Luo Liying,Deng Shuanglinzi,Jiang Yuanyuan,Wang Fangyuan,Hu Xinyue,Yin Hongling,Gong Guanghui,Feng Juntao,Li Xiaozhao

Abstract

BackgroundMonocytes are involved in the pathogenesis of ANCA-associated vasculitis (AAV). Monocyte/macrophages are the dominant infiltrating cells in the glomeruli of patients with myeloperoxidase-AAV (MPO-AAV). However, how human monocyte subsets extravasate to the kidney in MPO-AAV with renal damage is unclear.Methods30 MPO-AAV patients with renal damage and 22 healthy controls were enrolled in this study. Monocyte subsets and monocyte-related chemokines in the blood and kidneys of MPO-AAV patients were detected. The chemoattractant activity of the CX3CL1-CX3CR1 axis on CD16+ monocytes was observed. The effect of MPO-ANCA on the migration of CD16+ monocytes to human glomerular endothelial cells (HGECs) was detected by flow cytometry and transwell migration assay.ResultsCompared with controls, CD16+ monocytes were significantly decreased in the blood and increased in the glomeruli of MPO-AAV patients with renal damage. The level of CX3CL1, but not CCL2, was significantly increased in the plasma of MPO-AAV patients. CX3CL1 co-localized with glomerular endothelial cells in MPO-AAV patients with renal damage. Moreover, we initially found that MPO-ANCA promotes an increase of the chemokine CX3CL1 on HGECs, imposing recruitment on CD16+ monocytes. Finally, the percentage of CD16+ monocytes in the blood was found to be positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with urinary protein creatinine ratio in MPO-AAV patients with renal damage. Furthermore, the urinary protein creatinine ratio was positively correlated with the infiltrating of CD14+ and CD16+ cells in the kidneys.ConclusionEnhanced extravasation of CD16+ monocytes to the kidney via the CX3CL1-CX3CR1 axis may be involved in renal damage in MPO-AAV.

Funder

Natural Science Foundation of Hunan Province

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3