Taurine Antagonizes Macrophages M1 Polarization by Mitophagy-Glycolysis Switch Blockage via Dragging SAM-PP2Ac Transmethylation

Author:

Meng Ling,Lu Cailing,Wu Bin,Lan Chunhua,Mo Laiming,Chen Chengying,Wang Xinhang,Zhang Ning,Lan Li,Wang Qihui,Zeng Xia,Li Xiyi,Tang Shen

Abstract

The excessive M1 polarization of macrophages drives the occurrence and development of inflammatory diseases. The reprogramming of macrophages from M1 to M2 can be achieved by targeting metabolic events. Taurine promotes for the balance of energy metabolism and the repair of inflammatory injury, preventing chronic diseases and complications. However, little is known about the mechanisms underlying the action of taurine modulating the macrophage polarization phenotype. In this study, we constructed a low-dose LPS/IFN-γ-induced M1 polarization model to simulate a low-grade pro-inflammatory process. Our results indicate that the taurine transporter TauT/SlC6A6 is upregulated at the transcriptional level during M1 macrophage polarization. The nutrient uptake signal on the membrane supports the high abundance of taurine in macrophages after taurine supplementation, which weakens the status of methionine metabolism, resulting in insufficient S-adenosylmethionine (SAM). The low availability of SAM is directly sensed by LCMT-1 and PME-1, hindering PP2Ac methylation. PP2Ac methylation was found to be necessary for M1 polarization, including the positive regulation of VDAC1 and PINK1. Furthermore, its activation was found to promote the elimination of mitochondria by macrophages via the mitophagy pathway for metabolic adaptation. Mechanistically, taurine inhibits SAM-dependent PP2Ac methylation to block PINK1-mediated mitophagy flux, thereby maintaining a high mitochondrial density, which ultimately hinders the conversion of energy metabolism to glycolysis required for M1. Our findings reveal a novel mechanism of taurine-coupled M1 macrophage energy metabolism, providing novel insights into the occurrence and prevention of low-grade inflammation, and propose that the sensing of taurine and SAM availability may allow communication to inflammatory response in macrophages.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3