HMG-Like DSP1 Mediates Immune Responses of the Western Flower Thrips (Frankliniella occidentalis) Against Beauveria bassiana, a Fungal Pathogen

Author:

Ahmed Shabbir,Roy Miltan Chandra,Choi Duyeol,Kim Yonggyun

Abstract

Western flower thrips, Frankliella occidentalis, is a serious pest by directly infesting host crops. It can also give indirect damage to host crops by transmitting a plant virus called tomato spotted wilt virus. A fungal pathogen, Beauveria bassiana, can infect thrips. It has been used as a biopesticide. However, little is known on the defense of thrips against this fungal pathogen. This study assessed the defense of thrips against the fungal infection with respect to immunity by analyzing immune-associated genes of F. occidentalis in both larvae and adults. Immunity-associated genes of western flower thrips were selected from three immunity steps: nonself recognition, mediation, and immune responses. For the pathogen recognition step, dorsal switch protein 1 (DSP1) was chosen. For the immune mediation step, phospholipase A2 (PLA2) and prostaglandin E2 synthase were also selected. For the step of immune responses, two phenoloxidases (PO) genes and four proPO-activating peptidase genes involved in melanization against pathogens were chosen. Dual oxidase gene involved in the production of reactive oxygen species and four antimicrobial peptide genes for executing humoral immune responses were selected. All immunity-associated genes were inducible to the fungal infection. Their expression levels were induced higher in adults than in larvae by the fungal infections. However, inhibitor treatments specific to DSP1 or PLA2 significantly suppressed the inducible expression of these immune-associated genes, leading to significant enhancement of fungal pathogenicity. These results suggest that immunity is essential for thrips to defend against B. bassiana, in which DSP1 and eicosanoids play a crucial role in eliciting immune responses.

Funder

Rural Development Administration

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3