DNA Vaccines Targeting Novel Cancer-Associated Antigens Frequently Expressed in Head and Neck Cancer Enhance the Efficacy of Checkpoint Inhibitor

Author:

Wang Chuan,Zainal Nur Syafinaz,Chai San Jiun,Dickie James,Gan Chai Phei,Zulaziz Natasha,Lye Bryan Kit Weng,Sutavani Ruhcha V.,Ottensmeier Christian H.,King Emma V.,Abraham Mannil Thomas,Ismail Siti Mazlipah binti,Lau Shin Hin,Kallarakkal Thomas George,Mun Kein Seong,Zain Rosnah binti,Abdul Rahman Zainal Ariff,Thomas Gareth J.,Cheong Sok Ching,Savelyeva Natalia,Lim Kue Peng

Abstract

HPV-independent head and neck squamous cell carcinoma (HNSCC) is a common cancer globally. The overall response rate to anti-PD1 checkpoint inhibitors (CPIs) in HNSCC is ~16%. One major factor influencing the effectiveness of CPI is the level of tumor infiltrating T cells (TILs). Converting TILlow tumors to TILhigh tumors is thus critical to improve clinical outcome. Here we describe a novel DNA vaccines to facilitate the T-cell infiltration and control tumor growth. We evaluated the expression of target antigens and their respective immunogenicity in HNSCC patients. The efficacy of DNA vaccines targeting two novel antigens were evaluated with or without CPI using a syngeneic model. Most HNSCC patients (43/44) co-expressed MAGED4B and FJX1 and their respective tetramer-specific T cells were in the range of 0.06-0.12%. In a preclinical model, antigen-specific T cells were induced by DNA vaccines and increased T cell infiltration into the tumor, but not MDSC or regulatory T cells. The vaccines inhibited tumor growth and improved the outcome alone and upon combination with anti-PD1 and resulted in tumor clearance in approximately 75% of mice. Pre-existence of MAGED4B and FJX1-reactive T cells in HNSCC patients suggests that these widely expressed antigens are highly immunogenic and could be further expanded by vaccination. The DNA vaccines targeting these antigens induced robust T cell responses and with the anti-PD1 antibody conferring excellent tumor control. This opens up an opportunity for combination immunotherapy that might benefit a wider population of HNSCC patients in an antigen-specific manner.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3