Towards a survival risk prediction model for metastatic NSCLC patients on durvalumab using whole-lung CT radiomics

Author:

Patwardhan Kedar A.,RaviPrakash Harish,Nikolaou Nikolaos,Gonzalez-García Ignacio,Salazar José Domingo,Metcalfe Paul,Reischl Joachim

Abstract

BackgroundExisting criteria for predicting patient survival from immunotherapy are primarily centered on the PD-L1 status of patients. We tested the hypothesis that noninvasively captured baseline whole-lung radiomics features from CT images, baseline clinical parameters, combined with advanced machine learning approaches, can help to build models of patient survival that compare favorably with PD-L1 status for predicting ‘less-than-median-survival risk’ in the metastatic NSCLC setting for patients on durvalumab. With a total of 1062 patients, inclusive of model training and validation, this is the largest such study yet.MethodsTo ensure a sufficient sample size, we combined data from treatment arms of three metastatic NSCLC studies. About 80% of this data was used for model training, and the remainder was held-out for validation. We first trained two independent models; Model-C trained to predict survival using clinical data; and Model-R trained to predict survival using whole-lung radiomics features. Finally, we created Model-C+R which leveraged both clinical and radiomics features.ResultsThe classification accuracy (for median survival) of Model-C, Model-R, and Model-C+R was 63%, 55%, and 68% respectively. Sensitivity analysis of survival prediction across different training and validation cohorts showed concordance indices ([95 percentile]) of 0.64 ([0.63, 0.65]), 0.60 ([0.59, 0.60]), and 0.66 ([0.65,0.67]), respectively. We additionally evaluated generalization of these models on a comparable cohort of 144 patients from an independent study, demonstrating classification accuracies of 65%, 62%, and 72% respectively.ConclusionMachine Learning models combining baseline whole-lung CT radiomic and clinical features may be a useful tool for patient selection in immunotherapy. Further validation through prospective studies is needed.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3