Diagnostic model constructed by five EMT-related genes for renal fibrosis and reflecting the condition of immune-related cells

Author:

Guo Yangyang,Yuan Ziwei,Hu Zujian,Gao Yuanyuan,Guo Hangcheng,Zhu Hengyue,Hong Kai,Cen Kenan,Mai Yifeng,Bai Yongheng,Yang Xuejia

Abstract

BackgroundRenal fibrosis is a physiological and pathological characteristic of chronic kidney disease (CKD) to end-stage renal disease. Since renal biopsy is the gold standard for evaluating renal fibrosis, there is an urgent need for additional non-invasive diagnostic biomarkers.MethodsWe used R package “limma” to screen out differently expressed genes (DEGs) based on Epithelial-mesenchymal transformation (EMT), and carried out the protein interaction network and GO, KEGG enrichment analysis of DEGs. Secondly, the least absolute shrinkage and selection operator (LASSO), random forest tree (RF), and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify candidate diagnostic genes. ROC curves were plotted to evaluate the clinical diagnostic value of these genes. In addition, mRNA expression levels of candidate diagnostic genes were analyzed in control samples and renal fibrosis samples. CIBERSORT algorithm was used to evaluate immune cells level. Additionally, gene set enrichment analysis (GSEA) and drug sensitivity were conducted.ResultsAfter obtaining a total of 24 DEGs, we discovered that they were mostly involved in several immunological and inflammatory pathways, including NF-KappaB signaling, AGE-RAGE signaling, and TNF signaling. Five genes (COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA) were subsequently identified as biomarkers for renal fibrosis through machine learning, and their expression levels were confirmed by validation cohort data sets and in vitro RT-qPCR experiment. The AUC values of these five genes demonstrated significant clinical diagnostic value in both the training and validation sets. After that, CIBERSORT analysis showed that these biomarkers were strongly associated with immune cell content in renal fibrosis patients. GSEA also identifies the potential roles of these diagnostic genes. Additionally, diagnostic candidate genes were found to be closely related to drug sensitivity. Finally, a nomogram for diagnosing renal fibrosis was developed.ConclusionCOL4A2, CXCL1, TIMP1, VCAM1, and VEGFA are promising diagnostic biomarkers of tissue and serum for renal fibrosis.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3