A Genome-Wide Association Study for Tolerance to Paratuberculosis Identifies Candidate Genes Involved in DNA Packaging, DNA Damage Repair, Innate Immunity, and Pathogen Persistence

Author:

Canive María,Badia-Bringué Gerard,Vázquez Patricia,Garrido Joseba M.,Juste Ramón A.,Fernandez Almudena,González-Recio Oscar,Alonso-Hearn Marta

Abstract

Although the genetic susceptibility to diseases has been extensively studied, the genetic loci and the primary molecular and cellular mechanisms that control disease tolerance are still largely unknown. Bovine paratuberculosis (PTB) is an enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP). PTB affects cattle worldwide and represents a major issue on animal health. In this study, the associations between host genetic and PTB tolerance were investigated using the genotypes from 277 Spanish Holstein cows with two distinct phenotypes: cases) infected animals with positive PCR and bacteriological culture results but without lesions in gut tissues (N= 24), and controls) animals with negative PCR and culture results but with PTB-associated lesions (N= 253). DNA from peripheral blood of the study population was genotyped with the Bovine EuroG MD Bead Chip, and the corresponding genotypes were imputed to whole-genome sequencing (WGS) data. A genome-wide association study was performed using the WGS data and the defined phenotypes in a case-control approach. A total of 142 single nucleotide polymorphisms (SNPs) were associated (false discovery rate ≤ 0.05, P values between 1.5 × 10-7 and 5.7 × 10-7) with tolerance (heritability= 0.55). The 40 SNPs with P-values < 5 × 10-7 defined 9 QTLs and 98 candidate genes located on BTA4, BTA9, BTA16, BTA25, and BTA26. Some of the QTLs identified in this study overlap with QTLs previously associated with PTB, bovine tuberculosis, mastitis, somatic cell score, bovine diarrhea virus persistent infection, tick resistance, and length of productive life. Two candidate genes with important roles in DNA damage response (ERCC4 and RMI2) were identified on BTA25. Functional analysis using the 98 candidate genes revealed a significant enrichment of the DNA packaging process (TNP2/PRMI1/PRM2/PRM3). In addition, the TNF-signaling (bta04668; TRAF5/CREB5/CASP7/CHUK) and the toxoplasmosis (bta05145; TGFβ2/CHUK/CIITA/SOCS1) pathways were significantly enriched. Interestingly, the nuclear Factor NF-κβ Inhibitor Kinase Alpha (CHUK), a key molecule in the regulation of the NF-κB pathway, was enriched in both pathways. Taken together, our results define a distinct immunogenetic profile in the PTB-tolerant animals designed to control bacterial growth, modulate inflammation, limit tissue damage and increase repair, thus reducing the severity of the disease.

Funder

Ministerio de Ciencia e Innovación

Agencia Estatal de Investigación

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3