Air Pollution Exposure Impairs Airway Epithelium IFN-β Expression in Pre-School Children

Author:

Bonato Matteo,Gallo Elisa,Turrin Martina,Bazzan Erica,Baraldi Federico,Saetta Marina,Gregori Dario,Papi Alberto,Contoli Marco,Baraldo Simonetta

Abstract

IntroductionAir pollution is a risk factor for respiratory infections and asthma exacerbations. We previously reported impaired Type-I and Type-III interferons (IFN-β/λ) from airway epithelial cells of preschool children with asthma and/or atopy. In this study we analyzed the association between rhinovirus-induced IFN-β/λ epithelial expression and acute exposure to the principal outdoor air pollutants in the same cohort.MethodsWe studied 34 children (17asthmatics/17non-asthmatics) undergoing fiberoptic bronchoscopy for clinical indications. Bronchial epithelial cells were harvested by brushing, cultured and experimentally infected with Rhinovirus Type 16 (RV16). RV16-induced IFN-β and λ expression was measured by quantitative real time PCR, as was RV16vRNA. The association between IFNs and the mean exposure to PM10, SO2 and NO2 in the day preceding bronchoscopy was evaluated using a Generalized Linear Model (GLM) with Gamma distribution.ResultsAcute exposure to PM10 and NO2 was negatively associated to RV16-induced IFNβ mRNA. For each increase of 1ug/m3 of NO2 we found a significative decrease of 2.3x103 IFN-β mRNA copies and for each increase of 1ug/m3 of PM10 a significative decrease of 1x103 IFN-β mRNA copies. No significant associations were detected between IFN-λ mRNA and NO2 nor PM10. Increasing levels of NO2 (but not PM10) were found to be associated to increased RV16 replication.ConclusionsShort-term exposure to high levels of NO2 and PM10 is associated to a reduced IFN-β expression by the airway epithelium, which may lead to increased viral replication. These findings suggest a potential mechanism underlying the link between air pollution, viral infections and asthma exacerbations.

Funder

Università degli Studi di Padova

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3