Construction of recombinant pseudorabies virus expressing PCV2 Cap, PCV3 Cap, and IL-4: investigation of their biological characteristics and immunogenicity

Author:

Yang Yanting,Xu Zhiwen,Tao Qian,Xu Lei,Gu Sirui,Huang Yao,Liu Zheyan,Zhang Yang,Wen Jianhua,Lai Siyuan,Zhu Ling

Abstract

BackgroundPorcine circovirus type 2 (PCV2) is a globally prevalent and recurrent pathogen that primarily causes slow growth and immunosuppression in pigs. Porcine circovirus type 3 (PCV3), a recently discovered virus, commonly leads to reproductive disorders in pigs and has been extensively disseminated worldwide. Infection with a single PCV subtype alone does not induce severe porcine circovirus-associated diseases (PCVD), whereas concurrent co-infection with PCV2 and PCV3 exacerbates the clinical manifestations. Pseudorabies (PR), a highly contagious disease in pigs, pose a significant threat to the swine industry in China.MethodsIn this study, recombinant strains named rPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 was constructed by using a variant strain XJ of pseudorabies virus (PRV) as the parental strain, with the TK/gE/gI genes deleted and simultaneous expression of PCV2 Cap, PCV3 Cap, and IL-4. The two recombinant strains obtained by CRISPR/Cas gE gene editing technology and homologous recombination technology has genetic stability in baby hamster Syrian kidney-21 (BHK-21) cells and is safe to mice.ResultsrPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 exhibited good safety and immunogenicity in mice, inducing high levels of antibodies, demonstrated 100% protection against the PRV challenge in mice, reduced viral loads and mitigated pathological changes in the heart, lungs, spleen, and lymph nodes during PCV2 challenge. Moreover, the recombinant viruses with the addition of IL-4 as a molecular adjuvant outperformed the non-addition group in most indicators.ConclusionrPRV-2Cap/3Cap and rPRV-2Cap/3Cap/IL4 hold promise as recombinant vaccines for the simultaneous prevention of PCV2, PCV3, and PRV, while IL-4, as a vaccine molecular adjuvant, effectively enhances the immune response of the vaccine.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3