CD27+ microparticle interactions and immunoregulation of CD4+ T lymphocytes

Author:

Cagnet Léonie,Neyrinck-Leglantier Déborah,Tamagne Marie,Berradhia Lylia,Khelfa Mehdi,Cleophax Sabine,Pirenne France,Vingert Benoît

Abstract

IntroductionAplasia and hematological malignancies are treated with platelet transfusions, which can have major immunomodulatory effects. Platelet concentrates (PCs) contain many immunomodulatory elements, including the platelets themselves, residual leukocytes, extracellular vesicles, such as microparticles (MPs), cytokines and other soluble elements. Two of these components, MPs and a soluble form of CD27 (sCD27), have been shown to play a particularly important role in immune system modulation. The loss of CD27 expression is an irreversible marker of terminal effector CD3+ T-lymphocyte (TL) differentiation, and the CD27+ MPs present in PCs may maintain CD27 expression on the surface of TLs, and, thus, the activation of these cells.MethodsIn this study, we phenotyped the CD27-expressing MPs present in PCs by microscale flow cytometry and investigated the interaction of these particles with CD4+ TLs. We cocultured MPs and PBMCs and determined the origin of the CD27 expressed on the surface of CD4+ TLs with the aid of two fluorochromes (BV510 for CD27 originating from MPs and BV786 for cellular CD27).ResultsWe showed that the binding of CD27- expressing MPs involved the CD70 molecule, which was also present on these MPs. Finally, the maintenance of CD27 expression on the surface of TLs by sorted CD27+ MPs led to activation levels lower than those observed with other types of MPs.DiscussionThese results for CD27-expressing MPs and their CD70-mediated targeting open up new possibilities for immunotherapy based on the use of MPs to maintain a phenotype or to target immune cells, for example. Moreover, decreasing the levels of CD27-expressing MPs in transfused platelets might also increase the chances of success for anti-CD27 monoclonal immunotherapy.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3