Identification and Expression Analysis of an Interacting Protein (LvFABP) that Mediates Vibrio parahaemolyticus AHPND Toxin Action

Author:

Gu Xiaoqian,Liu Mei,Wang Baojie,Jiang Keyong,Wang Lei

Abstract

Acute hepatopancreatic necrosis disease (AHPND) caused by Vibrio parahaemolyticus causing AHPND (VPAHPND) is the most serious disease affecting shrimp farming. The PirAvp and PirBvp toxins of VPAHPND are known virulence factors. However, the corresponding target protein in shrimp that mediates their action has not been identified. By screening yeast two-hybrid cDNA libraries from intestine, stomach, and hepatopancreas of Litopenaeus vannamei, the protein with the largest increase in gene expression in shrimp hepatopancreas in response to VPAHPND challenge was identified and designated LvFABP. Analysis revealed high sequence homology of the LvFABP gene and a lipocalin/cytosolic fatty acid binding gene. Yeast two-hybrid pairwise analysis, GST-pull down assay, and far-western blot assay were performed to determine the interaction between LvFABP and PirBvp. LvFABP was able to directly bind to PirBvp. The expression of LvFABP in the hepatopancreas was significantly higher at P23 and P27 developmental stages of L. vannamei. RNA interference (RNAi) of LvFABP reduced the mortality, histopathological signs of AHPND in the hepatopancreas, and the number of virulent VPAHPND bacteria in the intestine, stomach, and hepatopancreas after VPAHPND challenge. We concluded that the LvFABP was involved in AHPND pathogenesis and acted as a VPAHPND toxin interacting protein. This is the first identification of VPAHPND toxin interacting protein from the shrimp digestive system by yeast two-hybrid library screening and were confirmed by in vitro protein interaction verification and in vivo challenge experiments. This study provides novel insight into the contributions of LvFABP towards AHPND pathogenesis in shrimp. The findings could inform AHPND preventative measures in shrimp farming.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3