Metagenomic insights into the composition and function of the gut microbiota of mice infected with Toxoplasma gondii

Author:

Meng Jin-Xin,Wei Xin-Yu,Guo Huanping,Chen Yu,Wang Wei,Geng Hong-Li,Yang Xing,Jiang Jiang,Zhang Xiao-Xuan

Abstract

IntroductionDespite Toxoplasma gondii infection leading to dysbiosis and enteritis, the function of gut microbiota in toxoplasmosis has not been explored.MethodsHere, shotgun metagenomics was employed to characterize the composition and function of mouse microbial community during acute and chronic T. gondii infection, respectively.ResultsThe results revealed that the diversity of gut bacteria was decreased immediately after T. gondii infection, and was increased with the duration of infection. In addition, T. gondii infection led to gut microbiota dysbiosis both in acute and chronic infection periods. Therein, several signatures, including depression of Firmicutes to Bacteroidetes ratio and infection-enriched Proteobacteria, were observed in the chronic period, which may contribute to aggravated gut inflammation and disease severity. Functional analysis showed that a large amount of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and carbohydrate-active enzymes (CAZy) family displayed distinct variation in abundance between infected and healthy mice. The lipopolysaccharide biosynthesis related pathways were activated in the chronic infection period, which might lead to immune system imbalance and involve in intestinal inflammation. Moreover, microbial and functional spectrums were more disordered in chronic than acute infection periods, thus implying gut microbiota was more likely to participate in disease process in the chronically infected mice, even exacerbated immunologic derangement and disease progression.DiscussionOur data indicate that the gut microbiota plays a potentially important role in protecting mice from T. gondii infection, and contributes to better understand the association between gut microbiota and toxoplasmosis.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3