AbAgIntPre: A deep learning method for predicting antibody-antigen interactions based on sequence information

Author:

Huang Yan,Zhang Ziding,Zhou Yuan

Abstract

IntroductionAntibody-mediated immunity is an essential part of the immune system in vertebrates. The ability to specifically bind to antigens allows antibodies to be widely used in the therapy of cancers and other critical diseases. A key step in antibody therapeutics is the experimental identification of antibody-antigen interactions, which is generally time-consuming, costly, and laborious. Although some computational methods have been proposed to screen potential antibodies, the dependence on 3D structures still limits the application of these methods.MethodsHere, we developed a deep learning-assisted prediction method (i.e., AbAgIntPre) for fast identification of antibody-antigen interactions that only relies on amino acid sequences. A Siamese-like convolutional neural network architecture was established with the amino acid composition encoding scheme for both antigens and antibodies.Results and DiscussionThe generic model of AbAgIntPre achieved satisfactory performance with the Area Under Curve (AUC) of 0.82 on a high-quality generic independent test dataset. Besides, this approach also showed competitive performance on the more specific SARS-CoV dataset. We expect that AbAgIntPre can serve as an important complement to traditional experimental methods for antibody screening and effectively reduce the workload of antibody design. The web server of AbAgIntPre is freely available at http://www.zzdlab.com/AbAgIntPre.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Reference50 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3