High Immunogenicity of a T-Cell Epitope-Rich Recombinant Protein Rv1566c-444 From Mycobacterium tuberculosis in Immunized BALB/c Mice, Despite Its Low Diagnostic Sensitivity

Author:

Luan Xiuli,Fan Xueting,Wang Ruihuan,Deng Yunli,Chen Zixin,Li Na,Yan Yuhan,Li Xiaoyan,Liu Haican,Li Guilian,Wan Kanglin

Abstract

The discovery of immunodominant antigens is of great significance for the development of new especially sensitive diagnostic reagents and effective vaccines in controlling tuberculosis (TB). In the present study, we targeted the T-Cell epitope-rich fragment (nucleotide position 109-552) of Rv1566c from Mycobacterium tuberculosis (MTB) and got a recombinant protein Rv1566c-444 and the full-length protein Rv1566c with Escherichia coli expression system, then compared their performances for TB diagnosis and immunogenicity in a mouse model. The results showed that Rv1566c-444 had similar sensitivity with Rv1566c (44.44% Vs 30.56%) but lower sensitivity than ESAT-6&CFP-10&Rv3615c (44.4% Vs. 94.4%) contained in a commercial kit for distinguishing TB patients from healthy donors. In immunized BALB/c mice, Rv1566c-444 elicited stronger T-helper 1 (Th1) cellular immune response over Rv1566c with higher levels of Th1 cytokine IFN-γ and IFN-γ/IL-4 expression ratio by ELISA; more importantly, with a higher proliferation of CD4+ T cells and a higher proportion of CD4+ TNF-α+ T cells with flow cytometry. Rv1566c-444 also induced a higher level of IL-6 by ELISA and a higher proportion of Rv1566c-444-specific CD8+ T cells and a lower proportion of CD8+ IL-4+ T cells by flow cytometry compared with the Rv1566c group. Moreover, the Rv1566c-444 group showed a high IgG secretion level and the same type of CD4+ Th cell immune response (both IgG1/IgG2a >1) as its parental protein group. Our results showed the potential of the recombinant protein Rv1566c-444 enriched with T-Cell epitopes from Rv1566c as a host T cell response measuring biomarker for TB diagnosis and support further evaluation of Rv1566c-444 as vaccine antigen against MTB challenge in animal models in the form of protein mixture or fusion protein.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3