Human MHC class I molecule, HLA-A2.1, mediates activation of CD8+ T cell IFN-γ production and the T cell-dependent protection against reactivation of cerebral Toxoplasma infection

Author:

Mani Rajesh,Abdelaziz Mohamed H.,Michelon Alexandra,Suzuki Yasuhiro

Abstract

To examine whether the HLA-A2.1, one of the most common MHC class I molecules in humans, activates the protective immunity against reactivation of cerebral infection withToxoplasma gondii, HLA-A2.1-transgenic and wild-type (WT) mice were infected and treated with sulfadiazine to establish chronic infection in their brains. One month after discontinuation of sulfadiazine, which initiates reactivation of the infection, mRNA levels for tachyzoite (the acute stage form)-specific SAG1 and numbers of the foci associated tachyzoites were significantly less in the brains of the HLA-A2.1-transgenic than WT mice. Greater numbers of IFN-γ-producing CD8+T cells were detected in the spleens of infected transgenic than WT mice, and CD8+T cells from the former produced markedly greater amounts of IFN-γ than the T cells from the latter in response to tachyzoite antigensin vitro. When their CD8+T cells were systemically transferred to infected immunodeficient NSG mice expressing the HLA-A2.1, the CD8+T cells from HLA-A2.1-transgenic mice inhibited reactivation of the cerebral infection in the recipients more efficiently than did the WT T cells. Furthermore, the inhibition of reactivation of the infection by CD8+T cells from the transgenic mice was associated with increased cerebral expression of IFN-γ and effector molecules against tachyzoites in the recipients when compared to the WT CD8+T cell recipients. Thus, the human HLA-A2.1 is able to effectively activate IFN-γ production of CD8+T cells againstT. gondiitachyzoites and confer a potent protection against reactivation of cerebral infection with this parasite through the CD8+T cells activation.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3