Negative Regulator Nlrc3-like Maintain the Balanced Innate Immune Response During Mycobacterial Infection in Zebrafish

Author:

Niu Liangfei,Luo Geyang,Liang Rui,Qiu Chenli,Yang Jianwei,Xie Lingling,Zhang Kaile,Tian Yu,Wang Decheng,Song Shu,Takiff Howard E.,Wong Ka-Wing,Fan Xiaoyong,Gao Qian,Yan Bo

Abstract

The NOD-like receptors (NLRs) have been shown to be involved in infection and autoinflammatory disease. Previously, we identified a zebrafish NLR, nlrc3-like, required for macrophage homeostasis in the brain under physiological conditions. Here, we found that a deficiency of nlrc3-like leads to decreased bacterial burden at a very early stage of Mycobacterium marinum infection, along with increased production of pro-inflammatory cytokines, such as il-1β and tnf-α. Interestingly, myeloid-lineage specific overexpression of nlrc3-like achieved the opposite effects, suggesting that the impact of nlrc3-like on the host anti-mycobacterial response is mainly due to its expression in the innate immune system. Fluorescence-activated cell sorting (FACS) and subsequent gene expression analysis demonstrated that inflammasome activation-related genes were upregulated in the infected macrophages of nlrc3-like deficient embryos. By disrupting asc, encoding apoptosis-associated speck-like protein containing a CARD, a key component for inflammasome activation, the bacterial burden increased in asc and nlrc3-like double deficient embryos compared with nlrc3-like single deficient embryos, implying the involvement of inflammasome activation in infection control. We also found extensive neutrophil infiltration in the nlrc3-like deficient larvae during infection, which was associated with comparable bacterial burden but increased tissue damage and death at a later stage that could be alleviated by administration of dexamethasone. Our findings uncovered an important role of nlrc3-like in the negative regulation of macrophage inflammasome activation and neutrophil infiltration during mycobacterial infection. This highlights the importance of a balanced innate immune response during mycobacterial infection and provides a potential molecular basis to explain how anti-inflammatory drugs can improve treatment outcomes in TB patients whose infection is accompanied by a hyperinflammatory response.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3