Tolerance to Proinsulin-1 Reduces Autoimmune Diabetes in NOD Mice

Author:

Jhala Gaurang,Selck Claudia,Chee Jonathan,Kwong Chun-Ting J.,Pappas Evan G.,Thomas Helen E.,Kay Thomas W.H.,Krishnamurthy Balasubramanian

Abstract

T-cell responses to insulin and its precursor proinsulin are central to islet autoimmunity in humans and non-obese diabetic (NOD) mice that spontaneously develop autoimmune diabetes. Mice have two proinsulin genes proinsulin -1 and 2 that are differentially expressed, with predominant proinsulin-2 expression in the thymus and proinsulin-1 in islet beta-cells. In contrast to proinsulin-2, proinsulin-1 knockout NOD mice are protected from autoimmune diabetes. This indicates that proinsulin-1 epitopes in beta-cells maybe preferentially targeted by autoreactive T cells. To study the contribution of proinsulin-1 reactive T cells in autoimmune diabetes, we generated transgenic NOD mice with tetracycline-regulated expression of proinsulin-1 in antigen presenting cells (TIP-1 mice) with an aim to induce immune tolerance. TIP-1 mice displayed a significantly reduced incidence of spontaneous diabetes, which was associated with reduced severity of insulitis and insulin autoantibody development. Antigen experienced proinsulin specific T cells were significantly reduced in in TIP-1 mice indicating immune tolerance. Moreover, T cells from TIP-1 mice expressing proinsulin-1 transferred diabetes at a significantly reduced frequency. However, proinsulin-1 expression in APCs had minimal impact on the immune responses to the downstream antigen islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) and did not prevent diabetes in NOD 8.3 mice with a pre-existing repertoire of IGRP reactive T cells. Thus, boosting immune tolerance to proinsulin-1 partially prevents islet-autoimmunity. This study further extends the previously established role of proinsulin-1 epitopes in autoimmune diabetes in NOD mice.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3