Bone-marrow derived cells do not contribute to new beta-cells in the inflamed pancreas

Author:

Jiang Yinan,Wiersch John,Wu Wei,Qian Jieqi,Adama Maharana Prathap R.,Wu Nannan,Yang Weixia,Chen Congde,Zhu Lingyan,Prasadan Krishna,Gittes George K.,Xiao Xiangwei

Abstract

The contribution of bone-marrow derived cells (BMCs) to a newly formed beta-cell population in adults is controversial. Previous studies have only used models of bone marrow transplantation from sex-mismatched donors (or other models of genetic labeling) into recipient animals that had undergone irradiation. This approach suffers from the significant shortcoming of the off-target effects of irradiation. Partial pancreatic duct ligation (PDL) is a mouse model of acute pancreatitis with a modest increase in beta-cell number. However, the possibility that recruited BMCs in the inflamed pancreas may convert into beta-cells has not been examined. Here, we used an irradiation-free model to track the fate of the BMCs from the donor mice. A ROSA-mTmG red fluorescent mouse was surgically joined to an INS1Cre knock-in mouse by parabiosis to establish a mixed circulation. PDL was then performed in the INS1Cre mice 2 weeks after parabiosis, which was one week after establishment of the stable blood chimera. The contribution of red cells from ROSA-mTmG mice to beta-cells in INS1Cre mouse was evaluated based on red fluorescence, while cell fusion was evaluated by the presence of green fluorescence in beta-cells. We did not detect any red or green insulin+ cells in the INS1Cre mice, suggesting that there was no contribution of BMCs to the newly formed beta-cells, either by direct differentiation, or by cell fusion. Thus, the contribution of BMCs to beta-cells in the inflamed pancreas should be minimal, if any.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3