Author:
Zhang Jianhui,Li Jiao,Hu Kaifeng,Zhou Qi,Chen Xiaoxiao,He Jinlei,Yin Shuangshuang,Chi Yangjian,Liao Xuechun,Xiao Yuying,Qin Hanxiao,Zheng Zhiwan,Chen Jianping
Abstract
Visceral leishmaniasis (VL), also known as kala-azar, is the most dangerous form of leishmaniasis. Currently no effective vaccine is available for clinical use. Since the pathogenicity of differentLeishmaniastrains is inconsistent, the differentially expressed proteins inLeishmaniastrains may play an important role as virulence factors in pathogenesis. Therefore, effective vaccine candidate targets may exist in the differentially expressed proteins. In this study, we used differential proteomics analysis to find the differentially expressed proteins in twoLeishmania donovanistrains, and combined with immunoinformatics analysis to find new vaccine candidates. The differentially expressed proteins fromL. DD8 (low virulent) andL. 9044 (virulent) strains were analyzed by LC-MS/MS, and preliminarily screened by antigenicity, allergenicity and homology evaluation. The binding peptides of MHC II, IFN-γ and MHC I from differentially expressed proteins were then predicted and calculated for the second screening. IFN-γ/IL-10 ratios and conserved domain prediction were performed to choose more desirable differentially expressed proteins. Finally, the 3D structures of three vaccine candidate proteins were produced and submitted for molecular dynamics simulation and molecular docking interaction with TLR4/MD2. The results showed that 396 differentially expressed proteins were identified by LC-MS/MS, and 155 differentially expressed proteins were selected through antigenicity, allergenicity and homology evaluation. Finally, 16 proteins whose percentages of MHC II, IFN-γ and MHC I binding peptides were greater than those of control groups (TSA, LmSTI1, LeIF, Leish-111f) were considered to be suitable vaccine candidates. Among the 16 candidates, amino acid permease, amastin-like protein and the hypothetical protein (XP_003865405.1) simultaneously had the large ratios of IFN-γ/IL-10 and high percentages of MHC II, IFN-γ and MHC I, which should be focused on. In conclusion, our comprehensive work provided a methodological basis to screen new vaccine candidates for a better intervention against VL and associated diseases.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Immunology,Immunology and Allergy