Buprenorphine reverses neurocognitive impairment in EcoHIV infected mice: A potential therapy for HIV-NCI

Author:

Murphy Aniella J.,Kelschenbach Jennifer,He Hongxia,Chao Wei,Kim Boe-Hyun,Volsky David J.,Berman Joan W.

Abstract

Thirty-eight million people worldwide are living with HIV, PWH, a major public health problem. Antiretroviral therapy (ART) revolutionized HIV treatment and significantly increased the lifespan of PWH. However, approximately 15-50% of PWH develop HIV associated neurocognitive disorders (HIV-NCI), a spectrum of cognitive deficits, that negatively impact quality of life. Many PWH also have opioid use disorder (OUD), and studies in animal models of HIV infection as well as in PWH suggest that OUD can contribute to HIV-NCI. The synthetic opioid agonist, buprenorphine, treats OUD but its effects on HIV-NCI are unclear. We reported that human mature inflammatory monocytes express the opioid receptors MOR and KOR, and that buprenorphine reduces important steps in monocyte transmigration. Monocytes also serve as HIV reservoirs despite effective ART, enter the brain, and contribute to HIV brain disease. Using EcoHIV infected mice, an established model of HIV infection and HIV-NCI, we previously showed that pretreatment of mice prior to EcoHIV infection reduces mouse monocyte entry into the brain and prevents NCI. Here we show that buprenorphine treatment of EcoHIV infected mice with already established chronic NCI completely reverses the disease. Disease reversal was associated with a significant reduction in brain inflammatory monocytes and reversal of dendritic injury in the cortex and hippocampus. These results suggest that HIV-NCI persistence may require a continuing influx of inflammatory monocytes into the brain. Thus, we recommend buprenorphine as a potential therapy for mitigation of HIV brain disease in PWH with or without OUD.

Funder

National Institutes of Health

Burroughs Wellcome Fund

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3