Dysregulated hepatic lipid metabolism and gut microbiota associated with early-stage NAFLD in ASPP2-deficiency mice

Author:

Xie Fang,Xu Hang-fei,Zhang Jing,Liu Xiao-ni,Kou Bu-xin,Cai Meng-yin,Wu Jing,Dong Jin-ling,Meng Qing-hua,Wang Yi,Chen Dexi,Zhang Yang

Abstract

BackgroundGrowing evidence indicates that lipid metabolism disorders and gut microbiota dysbiosis were related to the progression of non-alcoholic fatty liver disease (NAFLD). Apoptosis-stimulating p53 protein 2 (ASPP2) has been reported to protect against hepatocyte injury by regulating the lipid metabolism, but the mechanisms remain largely unknown. In this study, we investigate the effect of ASPP2 deficiency on NAFLD, lipid metabolism and gut microbiota using ASPP2 globally heterozygous knockout (ASPP2+/-) mice.MethodsASPP2+/- Balb/c mice were fed with methionine and choline deficient diet for 3, 10 and 40 day to induce an early and later-stage of NAFLD, respectively. Fresh fecal samples were collected and followed by 16S rRNA sequencing. HPLC-MRM relative quantification analysis was used to identify changes in hepatic lipid profiles. The expression level of innate immunity-, lipid metabolism- and intestinal permeability-related genes were determined. A spearman’s rank correlation analysis was performed to identify possible correlation between hepatic medium and long-chain fatty acid and gut microbiota in ASPP2-deficiency mice.ResultsCompared with the WT control, ASPP2-deficiency mice developed moderate steatosis at day 10 and severe steatosis at day 40. The levels of hepatic long chain omega-3 fatty acid, eicosapentaenoic (EPA, 20:5 n-3) and docosahexaenoic (DHA, 22:6 n-3), were decreased at day 10 and increased at day 40 in ASPP+/- mice. Fecal microbiota analysis showed significantly increased alpha and beta diversity, as well as the composition of gut microbiota at the phylum, class, order, family, genus, species levels in ASPP2+/- mice. Moreover, ASPP-deficiency mice exhibited impaired intestinal barrier function, reduced expression of genes associated with chemical barrier (REG3B, REG3G, Lysozyme and IAP), and increased expression of innate immune components (TLR4 and TLR2). Furthermore, correlation analysis between gut microbiota and fatty acids revealed that EPA was significantly negatively correlated with Bifidobacterium family.ConclusionOur findings suggested that ASPP2-deficiency promotes the progression of NAFLD, alterations in fatty acid metabolism and gut microbiota dysbiosis. The long chain fatty acid EPA was significantly negatively correlated with Bifidobacterial abundance, which is a specific feature of NAFLD in ASPP2-deficiency mice. Totally, the results provide evidence for a mechanism of ASPP2 on dysregulation of fatty acid metabolism and gut microbiota dysbiosis.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3