Author:
Urban Aleksandra,Kowalska Daria,Stasiłojć Grzegorz,Kuźniewska Alicja,Skrobińska Anna,Arjona Emilia,Alonso Eugenia Castellote,Fenollosa Segarra María Ángeles,Jongerius Ilse,Spaapen Robbert,Satchell Simon,Thiel Marcel,Ołdziej Stanisław,Rodriguez de Córdoba Santiago,Okrój Marcin
Abstract
The impairment of the alternative complement pathway contributes to rare kidney diseases such as atypical hemolytic uremic syndrome (aHUS) and C3 glomerulopathy (C3G). We recently described an aHUS patient carrying an exceptional gain-of-function (GoF) mutation (S250C) in the classical complement pathway component C2 leading to the formation of hyperactive classical convertases. We now report the identification of the same mutation and another C2 GoF mutation R249C in two other patients with a glomerulopathy of uncertain etiology. Both mutations stabilize the classical C3 convertases by a similar mechanism. The presence of R249C and S250C variants in serum increases complement-dependent cytotoxicity (CDC) in antibody-sensitized human cells and elevates deposition of C3 on ELISA plates coated with C-reactive protein (CRP), as well as on the surface of glomerular endothelial cells. Our data justify the inclusion of classical pathway genes in the genetic analysis of patients suspected of complement-driven renal disorders. Also, we point out CRP as a potential antibody-independent trigger capable of driving excessive complement activation in carriers of the GoF mutations in complement C2.
Funder
Narodowe Centrum Nauki
Ministerio de Economía y Competitividad
Subject
Immunology,Immunology and Allergy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献