Immune Dysfunction Mediated by the ceRNA Regulatory Network in Human Placenta Tissue of Intrahepatic Cholestasis Pregnancy

Author:

Wang Yuya,Tang Yan,Yang Xianli,Xu Jie,Chen Yanjie,Xu Jing,Hu Shan,Yi Ping

Abstract

Pregnancy-related intrahepatic cholestasis (ICP) is a serious complication with adverse perinatal outcomes of preterm labor, fetal distress, or stillbirth. As a result, it is important to investigate and identify the potential critical pathogenic mechanisms of ICP. First, we collected the placental tissues from the ICP with placental weight and fetal birth weight loss for the whole transcriptome sequencing. Then we analyzed the differentially expressed (DE) circRNAs (DEcircRNAs) by SRPBM, DElncRNAs by FRKM, DEmiRNAs by TPM, and DEmRNAs by TPM and RSEM. Based on differential expression of term pregnancy placental tissues from pregnancies impacted by ICP (n=7) as compared to gestational aged matched control tissues (n=5), the circ/lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) regulatory networks were constructed. The ceRNA regulatory networks covered 3,714 events, including 21 DEmiRNAs, 36 DEcircRNAs, 146 DElncRNAs, and 169 DEmRNAs. According to the functional analysis, ICP complications were linked to the immune system, signal transduction, endocrine system, cell growth and death, and transport and catabolism. Further evidence suggested that the expression of immune-related genes KLRD1, BRAF, and NFATC4 might have a potential ceRNA mechanism by individual lncRNA sponging miR372-3p, miR-371a-3p, miR-7851-3p, and miR-449a to control downstream the level of TNF-α, IFN-γ, and IL-10, thereby regulating the pathophysiology of ICP. Furthermore, our results were validated by the qRT-PCR, western blotting and ELISA assays. In conclusion, this study is the first to evaluate placental ceRNA networks in pregnancies affected by ICP, showing alterations in immune regulatory networks which may impact fetal and placental growth. Overall our these data suggest that the ceRNA regulatory network may refine biomarker predictions for developing novel therapeutic approaches in ICP.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3