A Novel microRNA of Japanese Flounder Regulates Antimicrobial Immunity Involving a Bacteria-Binding CSF3

Author:

Li Wenrui,Guan Xiaolu,Sun Bin,Sun Li

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that regulate diverse biological processes including immunity. In a previous high-throughput RNA sequencing study, a novel miRNA, pol-miR-novel_642, was identified from Japanese flounder (Paralichthys olivaceus), a farmed fish species with important economic value. In this study, we investigated the regulatory mechanism and the function of pol-miR-novel_642 and its target gene. We found that pol-miR-novel_642 targeted, in a sequence-specific manner, a flounder gene encoding an uncharacterized protein that is a structural homologue of murine granulocyte colony stimulating factor 3 (CSF3). The expression of pol-miR-novel_642 and its target gene (named PoCSF3-1) was regulated, in different manners, by the bacterial pathogen Edwardsiella tarda and the viral pathogen megalocytivirus. Overexpression of pol-miR-novel_642 or interference with PoCSF3-1 expression in flounder cells strongly potentiated E. tarda infection. Consistently, in vivo knockdown of PoCSF3-1 enhanced bacterial dissemination in flounder tissues but blocked viral replication, whereas in vivo overexpression of PoCSF3-1 inhibited bacterial dissemination and facilitated viral infection. Overexpression/knockdown of PoCSF3-1 and pol-miR-novel_642 also affected the activation of autophagy. Recombinant PoCSF3-1 (rPoCSF3-1) interacted with and inhibited the growth of Gram-negative bacteria in a manner relying on a PoCSF3-1-characteristic structural motif that is absent in mouse CSF3. rPoCSF3-1 also regulated the proliferation, inflammatory response, and immune defense of flounder head kidney leukocytes in a structure-dependent fashion. Together, these results reveal the function of a novel miRNA-CSF3 regulatory system of flounder, and add new insights into the role and mechanism of fish miRNA and CSF3 in antimicrobial immunity.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3