Oral vaccination of fish against vibriosis using spore-display technology

Author:

Gonçalves Gabriela,Santos Rafaela A.,Coutinho Filipe,Pedrosa Neide,Curado Maria,Machado Marina,Costas Benjamin,Bonneville Lourenço,Serrano Mónica,Carvalho António Paulo,Díaz-Rosales Patricia,Oliva-Teles Aires,Couto Ana,Serra Cláudia R.

Abstract

Oral vaccines are highly demanded by the aquaculture sector, to allow mass delivery of antigens without using the expensive and labor-intensive injectable vaccines. These later require individual handling of fish, provoking stress-related mortalities.One possible strategy to create injection-free vaccine delivery vehicles is the use of bacterial spores, extremely resistant structures with wide biotechnological applications, including as probiotics, display systems, or adjuvants. Bacterial spores, in particular those of Bacillus subtilis, have been shown to behave as mucosal vaccine adjuvants in mice models. However, such technology has not been extensively explored against fish bacterial disease.In this study, we used a laboratory strain of B. subtilis, for which a variety of genetic manipulation tools are available, to display at its spores surface either a Vibrio antigenic protein, OmpK, or the green fluorescence protein, GFP. When previously vaccinated by immersion with the OmpK- carrying spores, zebrafish survival upon a bacterial challenge with V. anguillarum and V. parahaemolyticus, increased up to 50 - 90% depending on the pathogen targeted. Further, we were able to detect anti-GFP-antibodies in the serum of European seabass juveniles fed diets containing the GFP-carrying spores and anti-V. anguillarum antibodies in the serum of European seabass juveniles fed the OmpK-carrying spores containing diet. More important, seabass survival was increased from 60 to 86% when previously orally vaccinated with in-feed OmpK- carrying spores. Our results indicate that B. subtilis spores can effectively be used as antigen-carriers for oral vaccine delivery in fish.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Reference102 articles.

1. The state of world fisheries and aquaculture 2016,2016

2. The state of world fisheries and aquaculture 2020. sustainability in action,2020

3. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance;Cabello;Lancet Infect Dis,2016

4. Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections;Gauthier;Vet J,2015

5. Progress, challenges and opportunities in fish vaccine development;Adams;Fish Shellfish Immunol,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3