Role of ADAM10 and ADAM17 in the Regulation of Keratinocyte Adhesion in Pemphigus Vulgaris

Author:

Kugelmann Daniela,Anders Maresa,Sigmund Anna M.,Egu Desalegn T.,Eichkorn Ramona A.,Yazdi Amir S.,Sárdy Miklós,Hertl Michael,Didona Dario,Hashimoto Takashi,Waschke Jens

Abstract

The severe autoimmune blistering disease Pemphigus vulgaris (PV) is mainly caused by autoantibodies (IgG) against desmoglein (Dsg) 3 and Dsg1. The mechanisms leading to the development of blisters are not fully understood, but intracellular signaling seems to play an important role. Sheddases ADAM10 and ADAM17 are involved in the turnover of the desmosomal cadherin Dsg2 and ADAM10 has been shown to contribute to acantholysis in a murine pemphigus model. In the present study, we further examined the role of ADAM10 and ADAM17 both in keratinocyte adhesion and in the pathogenesis of PV. First, we found that inhibition of ADAM10 enhanced adhesion of primary human keratinocytes but not of immortalized keratinocytes. In dissociation assays, inhibition of ADAM10 shifted keratinocyte adhesion towards a hyperadhesive state. However, ADAM inhibition did neither modulate protein levels of Dsg1 and Dsg3 nor activation of EGFR at Y1068 and Y845. In primary human keratinocytes, inhibition of ADAM10, but not ADAM17, reduced loss of cell adhesion and fragmentation of Dsg1 and Dsg3 immunostaining in response to a PV1-IgG from a mucocutaneous PV patient. Similarly, inhibition of ADAM10 in dissociation assay decreased fragmentation of primary keratinocytes induced by a monoclonal antibody against Dsg3 and by PV-IgG from two other patients both suffering from mucosal PV. However, such protective effect was not observed in both cultured cells and ex vivo disease models, when another mucocutaneous PV4-IgG containing more Dsg1 autoantibodies was used. Taken together, ADAM10 modulates both hyperadhesion and PV-IgG-induced loss of cell adhesion dependent on the autoantibody profile.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3