Hypermethylation of Smad7 in CD4+ T cells is associated with the disease activity of rheumatoid arthritis

Author:

Hu Yiping,Xu Bihua,He Juan,Shan Hongying,Zhou Gengmin,Wang Deli,Bai Lu,Shang Hongxi,Nie Liping,Pan Fan,Lan Hui Yao,Wang Qingwen

Abstract

BackgroundSmad7 is protective in a mouse model of rheumatoid arthritis. Here we investigated whether Smad7-expressing CD4+ T cells and the methylation of Smad7 gene in CD4+ T cells contribute to the disease activity of RA in patients.MethodsPeripheral CD4+ T cells were collected from 35 healthy controls and 57 RA patients. Smad7 expression by CD4+ T cells were determined and correlated with the clinical parameters of RA including RA score and serum levels of IL-6, CRP, ESR, DAS28-CRP, DAS28-ESR, Swollen joints and Tender joints. Bisulfite sequencing (BSP-seq) was used to determine the DNA methylation in Smad7 promoter (-1000 to +2000) region in CD4+ T cells. In addition, a DNA methylation inhibitor, 5-Azacytidine (5-AzaC), was added to CD4+ T cells to examine the possible role of Smad7 methylation in CD4+ T cell differentiation and functional activity.ResultsCompared to the heath controls, Smad7 expression was significantly decreased in CD4+ T cells from RA patients and inversely correlated with the RA activity score and serum levels of IL-6 and CRP. Importantly, loss of Smad7 in CD4+ T cell was associated with the alteration of Th17/Treg balance by increasing Th17 over the Treg population. BSP-seq detected that DNA hypermethylation occurred in the Smad7 promoter region of CD4+ T cells obtained from RA patients. Mechanistically, we found that the DNA hypermethylation in the Smad7 promoter of CD4+ T cells was associated with decreased Smad7 expression in RA patients. This was associated with overreactive DNA methyltransferase (DMNT1) and downregulation of the methyl-CpG binding domain proteins (MBD4). Inhibition of DNA methylation by treating CD4+ T cells from RA patients with 5-AzaC significantly increased Smad7 mRNA expression along with the increased MBD4 but reduced DNMT1 expression, which was associated with the rebalance in the Th17/Treg response.ConclusionDNA hypermethylation at the Smad7 promoter regions may cause a loss of Smad7 in CD4+ T cells of RA patients, which may contribute to the RA activity by disrupting the Th17/Treg balance.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3