Small immunological clocks identified by deep learning and gradient boosting

Author:

Kalyakulina Alena,Yusipov Igor,Kondakova Elena,Bacalini Maria Giulia,Franceschi Claudio,Vedunova Maria,Ivanchenko Mikhail

Abstract

BackgroundThe aging process affects all systems of the human body, and the observed increase in inflammatory components affecting the immune system in old age can lead to the development of age-associated diseases and systemic inflammation.ResultsWe propose a small clock model SImAge based on a limited number of immunological biomarkers. To regress the chronological age from cytokine data, we first use a baseline Elastic Net model, gradient-boosted decision trees models, and several deep neural network architectures. For the full dataset of 46 immunological parameters, DANet, SAINT, FT-Transformer and TabNet models showed the best results for the test dataset. Dimensionality reduction of these models with SHAP values revealed the 10 most age-associated immunological parameters, taken to construct the SImAge small immunological clock. The best result of the SImAge model shown by the FT-Transformer deep neural network model has mean absolute error of 6.94 years and Pearson ρ = 0.939 on the independent test dataset. Explainable artificial intelligence methods allow for explaining the model solution for each individual participant.ConclusionsWe developed an approach to construct a model of immunological age based on just 10 immunological parameters, coined SImAge, for which the FT-Transformer deep neural network model had proved to be the best choice. The model shows competitive results compared to the published studies on immunological profiles, and takes a smaller number of features as an input. Neural network architectures outperformed gradient-boosted decision trees, and can be recommended in the further analysis of immunological profiles.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3