Bioenergetic Failure Drives Functional Exhaustion of Monocytes in Acute-on-Chronic Liver Failure

Author:

Maheshwari Deepanshu,Kumar Dhananjay,Jagdish Rakesh Kumar,Nautiyal Nidhi,Hidam Ashinikumar,Kumari Rekha,Sehgal Rashi,Trehanpati Nirupama,Baweja Sukriti,Kumar Guresh,Sinha Swati,Bajpai Meenu,Pamecha Viniyendra,Bihari Chhagan,Maiwall Rakhi,Sarin Shiv Kumar,Kumar Anupam

Abstract

ObjectiveThe monocyte–macrophage system is central to the host’s innate immune defense and in resolving injury. It is reported to be dysfunctional in acute-on-chronic liver failure (ACLF). The disease-associated alterations in ACLF monocytes are not fully understood. We investigated the mechanism of monocytes’ functional exhaustion and the role of umbilical cord mesenchymal stem cells (ucMSCs) in re-energizing monocytes in ACLF.DesignMonocytes were isolated from the peripheral blood of ACLF patients (n = 34) and matched healthy controls (n = 7) and patients with compensated cirrhosis (n = 7); phagocytic function, oxidative burst, and bioenergetics were analyzed. In the ACLF mouse model, ucMSCs were infused intravenously, and animals were sacrificed at 24 h and day 11 to assess changes in monocyte function, liver injury, and regeneration.ResultsPatients with ACLF (alcohol 64%) compared with healthy controls and those with compensated cirrhosis had an increased number of peripheral blood monocytes (p < 0.0001) which displayed significant defects in phagocytic (p < 0.0001) and oxidative burst capacity (p < 0.0001). ACLF patients also showed a significant increase in the number of liver macrophages as compared with healthy controls (p < 0.001). Bioenergetic analysis showed markedly reduced oxidative phosphorylation (p < 0.0001) and glycolysis (p < 0.001) in ACLF monocytes. Patients with monocytes having maximum mitochondrial respiration of <37.9 pmol/min [AUC = 0.822, hazard ratio (HR) = 4.5] and baseline glycolysis of ≤42.7 mpH/min (AUC = 0.901, HR = 9.1) showed increased 28-day mortality (p < 0.001). Co-culturing ACLF monocytes with ucMSC showed improved mitochondrial respiration (p < 0.01) and phagocytosis (p < 0.0001). Furthermore, ucMSC therapy increased monocyte energy (p < 0.01) and phagocytosis (p < 0.001), reduced hepatic injury, and enhanced hepatocyte regeneration in ACLF animals.ConclusionBioenergetic failure drives the functional exhaustion of monocytes in ACLF. ucMSCs resuscitate monocyte energy and prevent its exhaustion. Restoring monocyte function can ameliorate hepatic injury and promote liver regeneration in the animal model of ACLF.

Funder

Science and Engineering Research Board

Department of Biotechnology, Ministry of Science and Technology, India

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3