Identification of key genes modules linking diabetic retinopathy and circadian rhythm

Author:

Ling Feng,Zhang Caijie,Zhao Xin,Xin Xiangyang,Zhao Shaozhen

Abstract

BackgroundDiabetic retinopathy (DR) is a leading cause of vision loss worldwide. Recent studies highlighted the crucial impact of circadian rhythms (CR) on normal retinopathy in response to the external light cues. However, the role of circadian rhythms in DR pathogenesis and potential investigational drugs remains unclear.MethodsTo investigate the weather CR affects DR, differential expression analysis was employed to identify differentially expressed genes (DEGs) from the GEO database (GSE160306). Functional enrichment analysis was conducted to identify relevant signaling pathways. LASSO regression was utilized to screen pivotal genes. Weighted gene co-expression network anlaysis (WGCNA) was applied to identify different modules. Additionally, we use the Comparative Toxicogenomics Database (CTD) database to search key genes related to drugs or molecular compounds. The diabetic mouse model received three consecutive intraperitoneal injections of streptozotocin (STZ) during 3 successive days.ResultsWe initially identified six key genes associated with circadian rhythm in DR, including COL6A3, IGFBP2, IGHG4, KLHDC7A, RPL26P30, and MYL6P4. Compared to normal tissue, the expression levels of COL6A3 and IGFB2 were significantly increased in DR model. Furthermore, we identified several signaling pathways, including death domain binding, insulin-like growth factor I binding, and proteasome binding. We also observed that COL6A3 was positively correlated with macrophages (cor=0.628296895, p=9.96E-08) and Th17 cells (cor=0.665120835, p=9.14E-09), while IGFBP2 showed a negatively correlated with Tgd (cor=-0.459953045, p=0.000247284) and Th2 cells (cor=-0.442269719, p=0.000452875). Finally, we identified four drugs associated with key genes: Resveratrol, Vitamin E, Streptozocin, and Sulindac.ConclusionOur findings revealed several key genes related to circadian rhythms and several relevant drugs in DR, providing a novel insight into the mechanism of DR and potential implications for future DR treatment. This study contributes to a better understanding of CR in DR and its implications for future therapeutic interventions.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3