Regulation of emergency granulopoiesis during infection

Author:

Paudel Sagar,Ghimire Laxman,Jin Liliang,Jeansonne Duane,Jeyaseelan Samithamby

Abstract

During acute infectious and inflammatory conditions, a large number of neutrophils are in high demand as they are consumed in peripheral organs. The hematopoietic system rapidly responds to the demand by turning from steady state to emergency granulopoiesis to expedite neutrophil generation in the bone marrow (BM). How the hematopoietic system integrates pathogenic and inflammatory stress signals into the molecular cues of emergency granulopoiesis has been the subject of investigations. Recent studies in the field have highlighted emerging concepts, including the direct sensing of pathogens by BM resident or sentinel hematopoietic stem and progenitor cells (HSPCs), the crosstalk of HSPCs, endothelial cells, and stromal cells to convert signals to granulopoiesis, and the identification of novel inflammatory molecules, such as C/EBP-β, ROS, IL-27, IFN-γ, CXCL1 with direct effects on HSPCs. In this review, we will provide a detailed account of emerging concepts while reassessing well-established cellular and molecular players of emergency granulopoiesis. While providing our views on the discrepant results and theories, we will postulate an updated model of granulopoiesis in the context of health and disease.

Funder

Office of Extramural Research, National Institutes of Health

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Reference177 articles.

1. Immunity in infective diseases. by il'ia il'ich mechnikov, 1905;Mechnikov;Rev Infect Dis,1988

2. Neutrophil kinetics in man;Dancey;J Clin Invest,1976

3. Awakening dormant haematopoietic stem cells;Trumpp;Nat Rev Immunol,2010

4. Hematopoietic stem cell: self-renewal versus differentiation;Seita;Wiley Interdiscip Rev Syst Biol Med,2010

5. Hematopoietic stem cell lineage specification;Pouzolles;Curr Opin Hematol,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3