TIE-2 Signaling Activation by Angiopoietin 2 On Myeloid-Derived Suppressor Cells Promotes Melanoma-Specific T-cell Inhibition

Author:

Marguier Amélie,Laheurte Caroline,Lecoester Benoît,Malfroy Marine,Boullerot Laura,Renaudin Adeline,Seffar Evan,Kumar Abhishek,Nardin Charlée,Aubin François,Adotevi Olivier

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous group of immune suppressive cells detected in several human cancers. In this study, we investigated the features and immune suppressive function of a novel subset of monocytic MDSC overexpressing TIE-2 (TIE-2+ M-MDSC), the receptor for the pro-angiogenic factor angiopoietin 2 (ANGPT2). We showed that patients with melanoma exhibited a higher circulating rate of TIE-2+ M-MDSCs, especially in advanced stages, as compared to healthy donors. The distribution of the TIE-2+ M-MDSC rate toward the melanoma stage correlated with the serum level of ANGPT2. TIE-2+ M-MDSC from melanoma patients overexpressed immune suppressive molecules such as PD-L1, CD73, TGF-β, and IL-10, suggesting a highly immunosuppressive phenotype. The exposition of these cells to ANGPT2 increased the expression of most of these molecules, mainly Arginase 1. Hence, we observed a profound impairment of melanoma-specific T-cell responses in patients harboring high levels of TIE-2+ M-MDSC along with ANGPT2. This was confirmed by in vitro experiments indicating that the addition of ANGPT2 increased the ability of TIE-2+ M-MDSC to suppress antitumor T-cell function. Furthermore, by using TIE-2 kinase-specific inhibitors such as regorafenib or rebastinib, we demonstrated that an active TIE-2 signaling was required for optimal suppressive activity of these cells after ANGPT2 exposition. Collectively, these results support that TIE-2+ M-MDSC/ANGPT2 axis represents a potential immune escape mechanism in melanoma.

Funder

Ligue Contre le Cancer

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Reference47 articles.

1. Myeloid-Derived Suppressor Cells Coming of Age;Veglia;Nat Immunol,2018

2. Myeloid-Derived Suppressor Cells;Gabrilovich;Cancer Immunol Res,2017

3. Nutrition, Inflammation and Cancer;Zitvogel;Nat Immunol,2017

4. Myeloid-Derived Suppressor Cell Heterogeneity in Human Cancers;Solito;Ann New York Acad Sci,2014

5. Regulation of Tumor Metastasis by Myeloid-Derived Suppressor Cells;Condamine;Annu Rev Med,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3