HIV-1 activates oxidative phosphorylation in infected CD4 T cells in a human tonsil explant model

Author:

Freeman Tracey L.,Zhao Connie,Schrode Nadine,Fortune Trinisia,Shroff Sanjana,Tweel Benjamin,Beaumont Kristin G.,Swartz Talia H.

Abstract

IntroductionHuman immunodeficiency virus type 1 (HIV-1) causes a chronic, incurable infection leading to immune activation and chronic inflammation in people with HIV-1 (PWH), even with virologic suppression on antiretroviral therapy (ART). The role of lymphoid structures as reservoirs for viral latency and immune activation has been implicated in chronic inflammation mechanisms. Still, the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue remain unexplored.MethodsIn this study, we utilized human tonsil explants from healthy human donors and infected them with HIV-1 ex vivo. We performed single-cell RNA sequencing (scRNA-seq) to analyze the cell types represented in the tissue and to investigate the impact of infection on gene expression profiles and inflammatory signaling pathways.ResultsOur analysis revealed that infected CD4+ T cells exhibited upregulation of genes associated with oxidative phosphorylation. Furthermore, macrophages exposed to the virus but uninfected showed increased expression of genes associated with the NLRP3 inflammasome pathway.DiscussionThese findings provide valuable insights into the specific transcriptomic changes induced by HIV-1 infection in different cell types within lymphoid tissue. The activation of oxidative phosphorylation in infected CD4+ T cells and the proinflammatory response in macrophages may contribute to the chronic inflammation observed in PWH despite ART. Understanding these mechanisms is crucial for developing targeted therapeutic strategies to eradicate HIV-1 infection in PWH.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Reference127 articles.

1. Aging, inflammation, and HIV infection;Aberg;Topics Antiviral Med,2012

2. HIV Infection, inflammation, immunosenescence, and aging;Deeks;Annu Rev Med,2011

3. Early immune senescence in HIV disease;Desai;Curr HIV/AIDS Rep,2010

4. Premature age-related comorbidities among HIV-infected persons compared with the general population;Guaraldi;Clin Infect Dis,2011

5. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys;Grossman;Nat Med,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Targeting HIV persistence in the tissue;Current Opinion in HIV and AIDS;2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3