Limited impact of within-vector ecology on the evolution of malaria parasite transmission investment

Author:

Hoi Amber Gigi,Greischar Megan A.,Mideo Nicole

Abstract

Malaria parasites spend part of their life in a vertebrate host and the rest in an arthropod vector and must successfully navigate both environments to gain fitness. In vertebrate hosts, malaria parasites infect red blood cells and can either replicate asexually or develop into the sexual form required for transmission to the vector. Despite the clear fitness benefits of onward transmission, only a small proportion of malaria parasites convert to sexual development. Mathematical models seeking to test the plausibility of various hypotheses to explain these low “conversion rates” have focused almost exclusively on the vertebrate/host half of the parasite life cycle. Here, we examined how processes occurring in the vector, including density-dependent parasite development and parasite-induced vector mortality, influence the evolution of parasite conversion rate in the host by developing a multi-scale model of within-host infection dynamics and parasite within-vector developmental processes for rodent malaria. We found that, regardless of model specifications (e.g., definitions of fitness, magnitude of parasite-induced vector mortality), considering processes within the vector had only a weak influence on the optimal conversion rate, but substantially diminished the fitness returns for all strategies and resulted in a sharper declines off the optima. Our approach allowed us to derive new metrics of parasite fitness (which we call “infectivity functions”) that link within-host gametocyte density to the probability of transmission to new hosts after passing through the vector, and that prevent overestimation of parasite transmission potential.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3