Determination of nicotine in newborn meconium by high-Resolution ambient mass spectrometry using wooden-Tip spray

Author:

Wang Xinrong,Yang Mingyu,Xiao Hui,Liu Danping,Pan Lu,Zhang Liuyang,Yang Yan,Lu Qing,Liu Yanqiu,Yang Xiao,Yang Bicheng

Abstract

Prenatal exposure to nicotine that are mainly produced from tobacco smoke has been reported to affect infants. Therefore, nicotine exposure is one of important health concerns for newborn screening. Detecting nicotine and its metabolites such as cotinine in meconium were widely used to evaluate the tobacco exposure of pregnancy. In this study, disposable wooden tips were applied for touch sampling of meconium from newborn infants, and then were directly mounted on mass spectrometer (MS) to perform rapid screening of nicotine and cotinine. Choice of extraction/spray solvents was optimized. The limits of detection, reproducibility, linear response for direct analysis of meconium were also investigated. It is found the limits of detection (S/N = 3) to be as low as 0.36 ng/mg and 1.18 ng/mg for nicotine and cotinine, respectively, while the limits of quantitation (S/N = 10) to be 1.19 ng/mg and 3.94 ng/mg for nicotine and cotinine, respectively. The relative standard deviations (RSD) were found to be at 8.4%–19.8% (n = 6) for nicotine and cotinine, a good linear range from 5–500 ng/mL (R2 > 0.99). These analytical performances are well-accepted levels for ambient mass spectrometer analysis. In this study, evaluation of nicotine and cotinine in 22 puerpera volunteers were conducted by the established wooden-tip spray mass spectrometry (WTS-MS). These results showed that wooden-tip spray mass spectrometry would be useful for newborn screening of nicotine and cotinine in meconium with high reproducibility, speed, sensitivity, and specificity. Owing to the use of disposable wooden tips that involves no sample preparation and no chromatographic separation, our results show that wooden-tip spray mass spectrometry is a powerful tool for determination of nicotine in newborn meconium.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3