Highly efficient piezocatalytic composite with chitosan biopolymeric membranes and bismuth ferrite nanoparticles for dye decomposition and pathogenic S. aureus bacteria killing

Author:

Liu Yunhong,Roy Jhilik,Roy Shubham,Hoque Nur Amin,Guo Bing

Abstract

Untreated wastewater harbors dangerous pathogens, chemicals, and pollutants, posing grave public health threats. Nowadays, there is a rising demand for eco-friendly technologies for wastewater treatment. Recently, piezoelectric materials-based wastewater treatment technology has captured considerable interest among researchers because of its noninvasiveness and rapidity. Herein, a highly efficient piezoelectric composite material is designed with chitosan-incorporated bismuth ferrite (BFO) nanocrystals, to decompose pollutants and ablate bacteria in wastewater. On one hand, piezoelectric BFO has shown exclusive piezo-coefficient for ultrasound-mediated reactive oxygen species (ROS) production. On the other hand, chitosan depicts its biocompatible nature, which not only promotes cellular adhesion but also significantly elevates the ROS production capabilities of BFO under ultrasound. The synergistic effect of these two piezoelectric units in one composite entity shows an improved ROS production, eradicating ∼87.8% of Rhodamine B within 80 min under soft ultrasound treatment (rate constant, k ≈ 0.02866 min−1). After performing the scavenger experiment, it has been found that hydroxyl radicals are the dominating factor in this case. Further, the reusability of the composite piezocatalyst is confirmed through multiple cycles (five times) of the same experiment. The high polarizability of the composite material facilitates the generation of piezoelectric power through finger tapping (∼12.05 V), producing substantial instantaneous piezo-voltage. Moreover, the sample exhibits remarkable antibacterial activity, with nearly 99% bacterial eradication within 30 min. This indicates a significant advancement in utilizing biopolymeric composites incorporated with BFO for fabricating versatile devices with multidimensional applications.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3