Binary Mixtures of Imidazolium-Based Protic Ionic Liquids. Extended Temperature Range of the Liquid State Keeping High Ionic Conductivities

Author:

Abdurrokhman Iqbaal,Martinelli Anna

Abstract

Binary mixtures based on the two protic ionic liquids 1-ethylimidazolium triflate ([C2HIm][TfO]) and 1-ethylimidazolium bis(trifluoromethanesulfonyl)imide ([C2HIm][TFSI]) have been investigated, with focus on phase behavior, ionic conductivity, and intermolecular interactions as a function of composition (χTFSI indicating the mole fraction of the added compound). It is found that on addition of [C2HIm][TFSI] to [C2HIm][TfO], the melting temperature is first decreased (0 <χ 0.3) and then suppressed (0.3 <χ 0.8) resulting in mixtures with no phase transitions. These mixtures display a wide temperature range of the liquid state and should be interesting for use in devices operating at extreme temperatures. The ionic conductivity does not vary significantly across the composition range analyzed, as evidenced in the comparative Arrhenius plot. The activation energy, Ea, estimated by fitting with the Arrhenius relation in a limited temperature range (between 60 and 140 °C) varies marginally and keeps values between 0.17 and 0.21 eV. These marginal differences can be rationalized by the initially very similar values of the two neat protic ionic liquids. Vibrational spectroscopy, including both Raman and infrared spectroscopies, reveals weakening of the cation–anion interactions for increasing content of [C2HIm][TFSI], which is reflected by the blue shift of the average N-H stretching mode and the red shift of the S-O stretching mode in the TfO anion. These trends correlate with the higher disorder in the mixtures observed by DSC and are evidenced by the decrease and suppression of the melting temperature as the amount of [C2HIm][TFSI] is increased.

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3